

Amperometric CN: The How and Why

HELLOY

Brent Summers

Technical Account Representative

You can find me at brent@flowinjection.com

Outline

- The How: Fundamentals
 - Principles
 - How to Measure CN
 - How to Use Amp CN
- The Why: Practicals
 - Performance
 - Approved Methods
 - Instrument Considerations
- Conclusions

AMPEROMETRIC CN FUNDAMENTALS

1

Amperometry Principles

- Amperometry = measurement of electric current
- Needs electrochemical (redox) reaction
 - charge transfer

$$\begin{array}{c} +ve \ potential \\ A(Red) & \longleftarrow & B(Ox) + (ne-) \\ -ve \ potential \end{array}$$

- OILRIG = Oxidation Is Loss, Reduction Is Gain (of electrons)
- Use a potentiostat to generate & measure current

How to Measure CN

• Potentiostat

- Applies a potential on working electrode (WE) to drive redox reaction
- Reference electrode (RE) is the reference point for that potential
- Measures current that flows through WE & counter electrode (CE)

How to Measure CN

- Steady signal requires steadily moving solution
 - Can be implemented on a flow analyzer or using a stirred container
 - Cannot be run manually or on a discrete analyzer

How to Measure CN

• CN- reacts at Ag electrode, giving rise to a current (flow of e-)

How to Use Amperometric CN?

• All official amp CN methods rely on the concept of gas diffusion

How to Use Amperometric CN?

How to Use Amperometric CN?

Total CN

CN by Amperometry

CN by Amperometry

AMPEROMETRIC CN PRACTICALS

2

Performance

Approved Methods

Why use amperometric method for CN?

Performance

- MDL: ~0.5 ppb (available/free), ~1 ppb (total)
- Range: usually up to 500 ppb, possible to adjust w/ sample loop size
- Throughput: 20-40 samples/h (per ASTM D7511-12)

Approved Methods

- Many variant methods (* = included in 40 CFR Pt 136/141)
- Free CN (buffer at pH 6): ASTM D7237*¹³⁶; Uncomplexed CN
 - Available CN (acid dissociable): EPA OIA-1677*¹³⁶; Ag, Cd, Cu, Zn compl.
 Available CN (acid dissociable): ASTM D6888*¹³⁶; Ag, Cd, Cu, Zn compl.
 - Available CN (ligand displacement): EPA OIA-1677*136,141 ; + Hg, Ni
 - Available CN (ligand displacement): ASTM D6888*^{136,141}; + Hg, Ni
- Total

WAD

WAD

- Total CN (following manual distillation): ASTM D7284*¹³⁶; + Fe, Co, Au
 Total CN (in-line digestion): ASTM D7511*¹³⁶; + Fe, Co, Au
- "WAD" is not always clearly defined for available CN
 - Sometimes used for "acid dissociable".
 - Sometimes used for "ligand displacement".

Why Use Amperometric CN?

- Simplicity
 - No need to deal with toxic chemicals (pyridine, Chloramine T)
 - Reagents simple to prepare, affordable (acid, base)
- Reliability
 - Distillation can result in false positives, UV digestion is less prone to that
- Approved methods available for different CN "classes"
 - Free CN
 - Available (a.k.a. WAD) CN (weak / intermediate CN-metal complexes)
 - Total CN
- Automated removal of sulfide interference

Instrument Considerations

- No two potentiostats are equal
 - Make sure the detector uses a model capable of determining ~ 1 ppb CN
- Find out whether the method implementations are practical
 - Avoid methods with extreme low throughputs
- Instrument versatility
 - Easy conversion between Free, Available & Total CN setups
 - Get practical versatility with minimized capital investment
- \circ Beware of heat in connection with UV digestion for Total CN
 - Heat can result in false positives (creates CN from SCN, CNO)
 - Some level of false positives are ~50 ppb.

CONCLUSIONS

3

Conclusions

- Amperometry is the measure of electric current created by a redox reaction
- All amp CN use gas diffusion
- Many Benefits of Amperometric CN
 - Practical MDLs, range
 - Ease of reconfiguration
 - Ease of operation
- Eliminates extremely toxic chemicals
- Find an instrument that can analyze all three (Free, WAD, Total)

THANK YOU!

Any questions? You can find us at Booth 4 sales@flowinjection.com