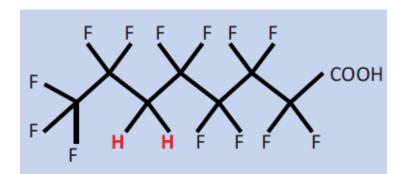
Emerging Contaminants

Comprehensive Targeted Workflows

Chris Snelling Agilent Technologies

PFAS

Per/Poly Fluoroalkyl Substances

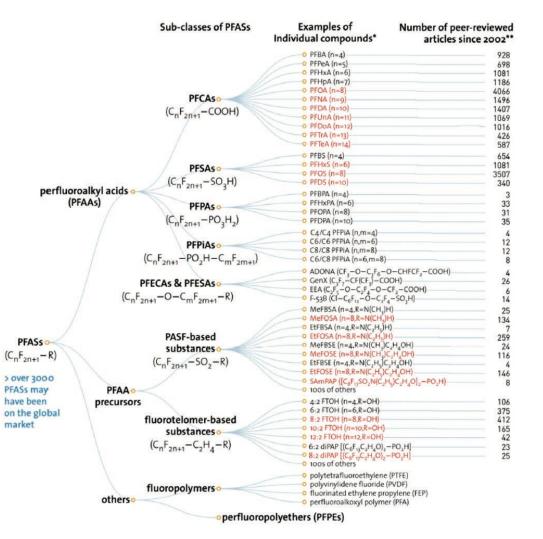

Terminology

Perfluoroalkyl substance

ALL H atoms linked to C in alkyl chain are substituted with F

Polyfluoroalkyl substance

SOME (but not all) H atoms linked to C in alkyl chain are substituted with F



PFAS Classifications and Terminology

>4000 PFAS compounds in commerce

Common Acronyms

PFCA	Perfluoroalkylcarboxylic acid							
PFOA	Perfluorooctanecarboxylic acid							
PFAS	Perfluoroalkylsulfonate							
PFOS	Perfluorooctanesulfonate							
PFASi	Perfluoroalkylsulfinate							
FOSA	Per f luoro o ctane s ulfon a mide							
FOSAA	Per f luoro o ctane s ulfon a mido a cetic acid							
FOSE	Per f luoro o ctane s ulfonamido e thanol							
FTOH	Fluorinated telomer alcohol (-OH functional group)							
FTA	Fluorinated telomer acid							
FTUA	Fluorinated telomer unsaturated acid							
FTS	Fluorinated t elomer s ulfonate							
PFAPA	Perfluoroalkylphosphonic acid							
PFPi	Perfluoroalkylphosphinate							
PAP	Mono-substituted p olyfluoro a lkyl p hosphate ester							
diPAP	Di-substituted polyfluoroalkylphosphate ester							
PFAI	Perfluoroalkyl iodide							
SFA	S emi f luorinated a lkane							
FTI	Fluorinated telomer iodide							
FTO	Fluorinated telomer olefin							
FTAC	Fluorinated telomer acrylate							

Wang, Z et al. (2017). Environ. Sci. Technol. 51, 2508-2518.

Current Standard & Consensus Methods Available

Method	Matrix Tested	No. of analytes	Sample preparation procedure	Quantification Technique	Sample (mL)/Injection (uL) Volume	Year
EPA 537	Drinking Water	14	Solid phase extraction	Internal standard correction	250/10	2008
EPA 537.1	Drinking Water	18	Solid phase Extraction	Internal standard correction	250/10	2018
EPA 533	Drinking Water	25	Solid phase extraction	Isotope dilution	250/10	2019
EPA 8327	Surface water, Ground water, Wastewater influent and effluent	24	Dilute & shoot	External calibration (isotope dilution also allowed)	5/30	2019
EPA 1633 (3 rd Draft)	Wastewater, Soil, Biota, Sediment, Groundwater	40	Solid Phase Extraction	Isotope Dilution	500/2	2022
ASTM 8421	Surface water, Ground water, Wastewater influent and effluent	44	Dilute & shoot	External calibration (isotope dilution also allowed)	5/30	2022
ASTM 7968	Soil and solids	21	Organic extraction with MeOH	External calibration	5g/30	2015
ISO/DIS 21675:2019	Drinking Water, Sea water, Fresh water, wastewater (<0.2% solids)	30	Solid phase extraction	Internal standard correction	500/5	2019

National Primary Drinking Water Regulations

Selected Per- and poly-fluoroalkyl substances (PFAS)

PFAS rule references

Contaminant	MCLG ¹ (mg/L) ²	$\frac{\text{MCL}_{-}^{1}}{(\text{mg/L})_{-}^{2}}$	HBWC ⁹ (mg/L) ² for <u>Hazard</u> Index Calculation	
<u>Hazard Index</u> PFAS (HFPO-DA, PFBS, PFHxS, and PFNA)	1(unitless)	1(unitless)	Not applicable	
HFPO-DA (commonly knowns as GenX Chemicals)	0.00001	0.00001	0.00001	
PFBS	No individual MCLG	No individual MCL	0.002	-
PFHxS	0.00001	0.00001	0.00001	
PFNA	0.00001	0.00001	0.00001	4 ng/L! (4 ppt)
PFOA	zero	0.000040	Not applicable	-
PFOS	zero	0.000040	Not applicable	-

TNI PT for Accreditation Fields of Proficiency Testing with PTRLs Drinking Water Effective: January 1, 2025

SOGR	1000									
					Blue = New Analyte		Magenta = C	hanges		
Matrix	EPA	TNI		Analyte ²	Conc Range		Accent	ance Criteria ^{3,4,5,6}		TNI PTRL ⁷
maaria	Analyte	Analyte	CAS	, and yes	o ono ritango	а	b	C	d	
	Code	Code	Number							
				РАН	µg/L					µg/L
Drinking Water	0122	5580	50-32-8	Benzo(a)pyrene ¹	0.2 to 2.5	0.8471	-0.0040	0.1854	0.0547	0.02
				Diaxia	n all					nal
	0050	0040	1710.01.0	Dioxin	pg/L	0.0040	4 40.05	0.4000		pg/L
rinking Water	0252	9618	1746-01-6	2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) ¹	20 to 100	0.8642	1.4865	0.1392	1.1445	11
				PFAS	ng/L					ng/L
rinking Water	2813	9490	763051-92-9	11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2822	6948	39108-34-4	1H, 1H, 2H, 2H-Perfluorodecane sulfonic acid (8:2FTS)	10 to 200		±40% fix	ed acceptance lim	nit	6
rinking Water	2821	6946	757124-72-4	1H,1H, 2H, 2H-Perfluorohexane sulfonic acid (4:2FTS)	10 to 200			ed acceptance lin		6
rinking Water	2820	6947	27619-97-2	1H, 1H, 2H, 2H-Perfluorooctane sulfonic acid (6:2FTS)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2815	6951	919005-14-4	4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	10 to 200			ed acceptance lin		6
rinking Water	2814	6952	756426-58-1	9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2816	9460	13252-13-6	Hexafluoropropylene oxide dimer acid (HFPO-DA) (GenX)	10 to 200		±30% fix	ed acceptance lin	nit	7
rinking Water	2817	4846	2991-50-6	N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2818	4847	2355-31-9	N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2827	6956	151772-58-6	Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	10 to 200			ed acceptance lin		6
rinking Water	2826	6957	113507-82-7	Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2823	6965	377-73-1	Perfluoro-3-methoxypropanoic acid (PFMPA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2825	6966	863090-89-5	Perfluoro-4-methoxybutanoic acid (PFMBA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2801	6918	375-73-5	Perfluorobutanesulfonic acid (PFBS)	10 to 200		±30% fix	ed acceptance lin	nit	7
rinking Water	2819	6915	375-22-4	Perfluorobutanoic acid (PFBA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2807	6905	335-76-2	Perfluorodecanoic acid (PFDA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2808	6903	307-55-1	Perfluorododecanoic acid (PFDoA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2829	9470	375-92-8	Perfluoroheptanesulfonic acid (PFHpS)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2802	6908	375-85-9	Perfluoroheptanoic acid (PFHpA)	10 to 200		±40% fix	ed acceptance lin	nit	6
rinking Water	2803	6927	355-46-4	Perfluorohexanesulfonic acid (PFHxS)	10 to 200			ed acceptance lin		7
inking Water	2809	6913	307-24-4	Perfluorohexanoic acid (PFHxA)	10 to 200			ed acceptance lin		6
inking Water	2804	6906	375-95-1	Perfluorononanoic acid (PFNA)	10 to 200			ed acceptance lim		7
inking Water	2805	6931	1763-23-1	Perfluorooctanesulfonic acid (PFOS)	10 to 200		±30% fix	ed acceptance lin	nit	7
rinking Water	2806	6912	335-67-1	Perfluorooctanoic acid (PFOA)	10 to 200			ed acceptance lim		7
rinking Water	2828	6934	2706-91-4	Perfluoropentanesulfonic acid (PFPeS)	10 to 200			ed acceptance lin		6
rinking Water	2824	6914	2706-90-3	Perfluoropentanoic acid (PFPeA)	10 to 200			ed acceptance lin		6
rinking Water	2810	6902	376-06-7	Perfluorotetradecanoic acid (PFTA)	10 to 200			ed acceptance lim		6
rinking Water	2811	9563	72629-94-8	Perfluorotridecanoic acid (PFTrDA)	10 to 200			ed acceptance lin		6
Drinking Water	2812	6904	2058-94-8	Perfluoroundecanoic acid (PFUnA)	10 to 200			ed acceptance lin		6

Rulemaking at DEQ

DEQ's mission is to be a leader in restoring, maintaining and enhancing the quality of Oregon's air, land and water.

> Rulemaking at DEQ > Proposed Rules > PFAS 2025

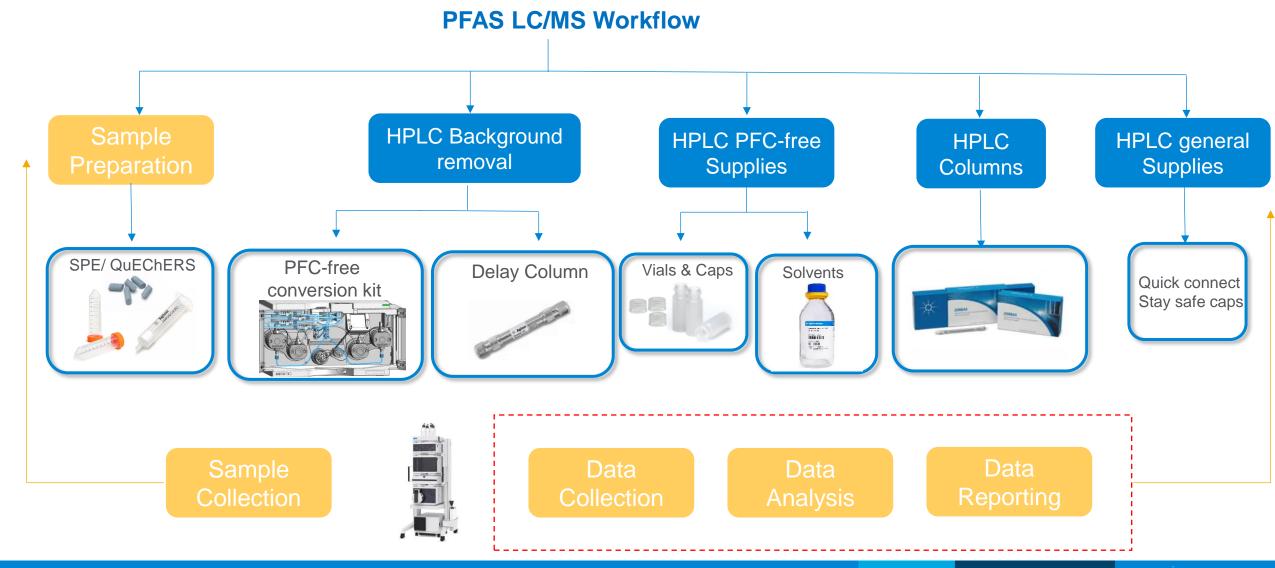
PFAS 2025

How to Find Rules and Rulemaking Documents

Search DEQ Rulemaking Documents

Search Official Version Of The Rules

Greenhouse Gas Emissions Program 2021


Proposed rule

Rulemaking contact: Sarah Van Glubt, 503-709-8253, PFAS.2025@deq.oregon.gov

This rulemaking proposes to include two per- and polyfluoroalkyl substances (PFAS), perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), including their salts and structural isomers, in the definition of hazardous substances in Oregon Administrative Rule (OAR) 340-122-0115 (30) which would give the Department authority to require investigation and removal and remedial actions of PFOA and PFOS releases and align with the US Environmental Protection Agency's approach. PFOA and PFOS are among the most commonly detected PFAS, are known or suspected carcinogens, and have been shown to exhibit toxicity effects to humans and wildlife even at low levels of exposure.

PFAS Sample Prep & Analysis: Basic Workflow Overview Address background and contamination issues with a robust workflow

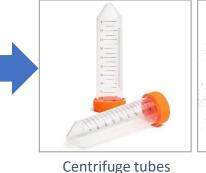
SLIMS - Automation of EPA Workflows for PFAS

Sample Management Inventory Management

Workflow Execution

- Sample Prep
- Masshunter
 Integration
- Results Evaluation

Dashboard & Reporting


SLIMS		ORDERS	WORKFLOW MANAGEMENT	SLIMS STORE	DASHBOARDS					Ĵ		admin						
WORKFLOW MANAGEMENT	🕄 New	EPA 1633		•	Hide inactive	C												
Workflow Graph Requestables			Pro	tocol: S	oil Sample	e Prep	/ersion: 1	•	Ĵ Show all									
X X Workflow Import Protocol Remove workflow	New protocol	Restore protocols	>>>	Protocol	>>> Content select	ion step 🔊	Protocol B	teps >>	> Final electron	ic signatur	e step	C	± (j)					
			Se 👚 N	lame Ty	pe Plugin	Renderer	Descrip	Tests	Conten	Sub pr	Sign off		*					
		1 5	ink	k content		Link and consume		0		,	0 ×							
Water Sample Start	Soil San	Soil Sa	Soil Sar	t Soil Sa	Soil Sample Start	Soil Sample Start	Soil Sample Start		djust pH Re	sult		pH should be 6.0 - 7.0	рН	\oslash				
Water Sample Prep	Soil Sar	mple Prep		xtraction Mi etup	×		Clean silanized		Output									
			4 C 5	ondition Mi PE	×		15 mL - 1% methanolic		Output									
Analyz LC QQ				q no (Ascendii cocol step inf								Total	rows: 5					
					1	lame		*	Dr. 💉 Usage	t 🗡 I	Default	Defa						
Finish						nfinityLab Ultra	pure LC/MS W	ater	Z		500	>_ mi						
(Content types		nfinityLab Ultra	pure LCMS Ac	etonitrile	Image: A start and a start		250	> ml	-					
		🖌 LC-MS grade MeOH				он		Image: A start and a start		25	>_ ml							
			Û	o (0)														

PFAS Analysis Workflow Consumables, Supplies and Hardware

Wastewater (500mL)

 Centrifuge tubes
 Carbon S

 50 mL (5610-2039)
 (5610-2093)

Empty SPE tubes, 60 mL (12131012)

SPE Adapters (12131001)

Vac Elut SPS 24 (12234003)

PFC-free kit (5004-0006) PFC delay column (5062-8100) Analytical column Eclipse Plus C18, 2.1 x 100 mm, 1.8 μm (959758-902)

PFAS MRM Database (G1736AA)

Polypropylene AS Vials (5191-8151, 5191-8150)

Silanized

(8500-1572)

Syringes (9301-6476)

Nylon Filters

(5190-5092)

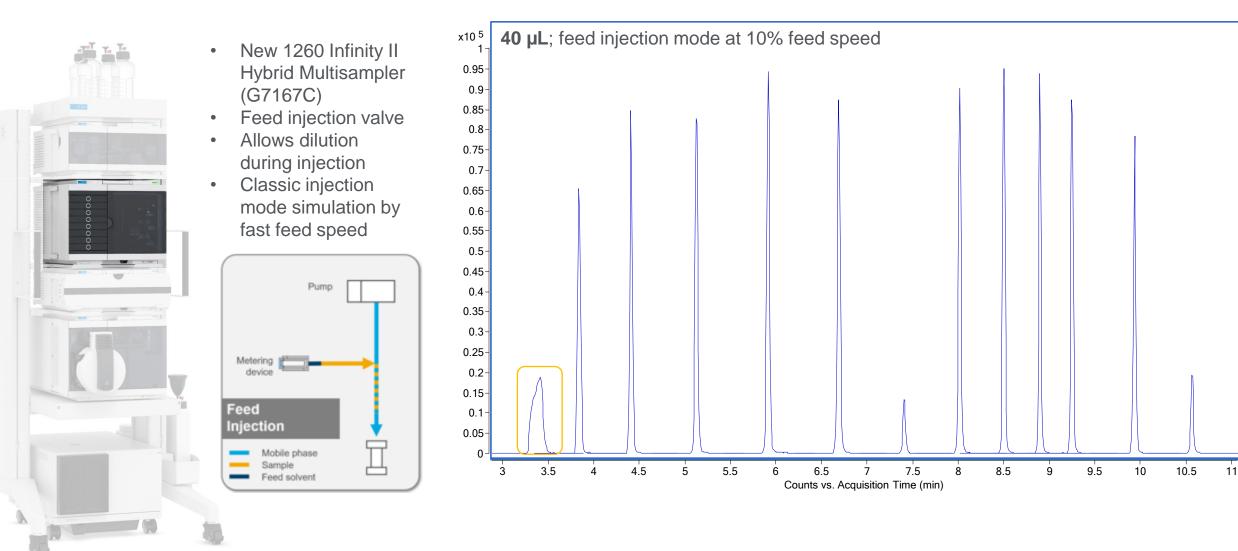

WAX 150 mg, 6 mL

(5610-2152)

Centrifuge tubes 15 mL (5610-2039)

1290 Infinity II LC system q

Solid Phase Extraction – Bond Elut PFAS WAX


Specifically designed, developed and manufactured for PFAS applications

- Cleanliness
- Sorbent and cartridge formats compatible with all existing regulated methods
 - EPA method 533 for drinking water
 - EPA method 1633 (draft) for aqueous, solids, biosolids, and tissue samples
 - ISO 21675:2019 for drinking water, sea water, fresh water, and wastewater
- Performance equivalent to other commercial cartridges
- Fits into Agilent's existing PFAS workflows

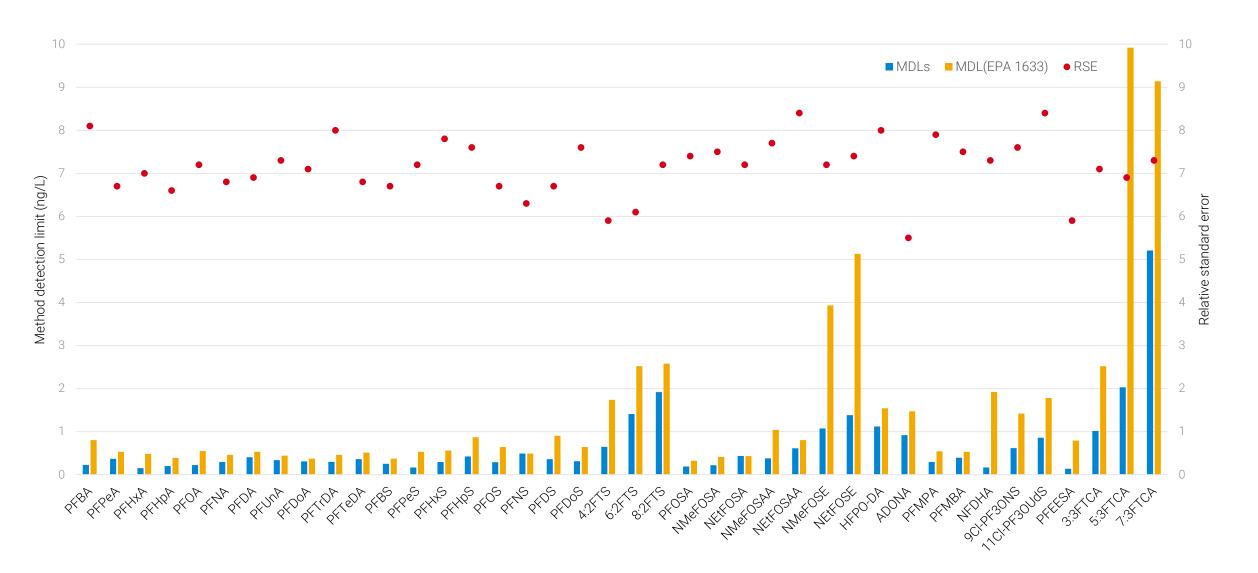
New way to overcome strong solvent effects at high injection volumes Improve peak shape and sensitivity of early eluting PFAS

The 6495 Triple Quadrupole LC/MS with iFunnel technology

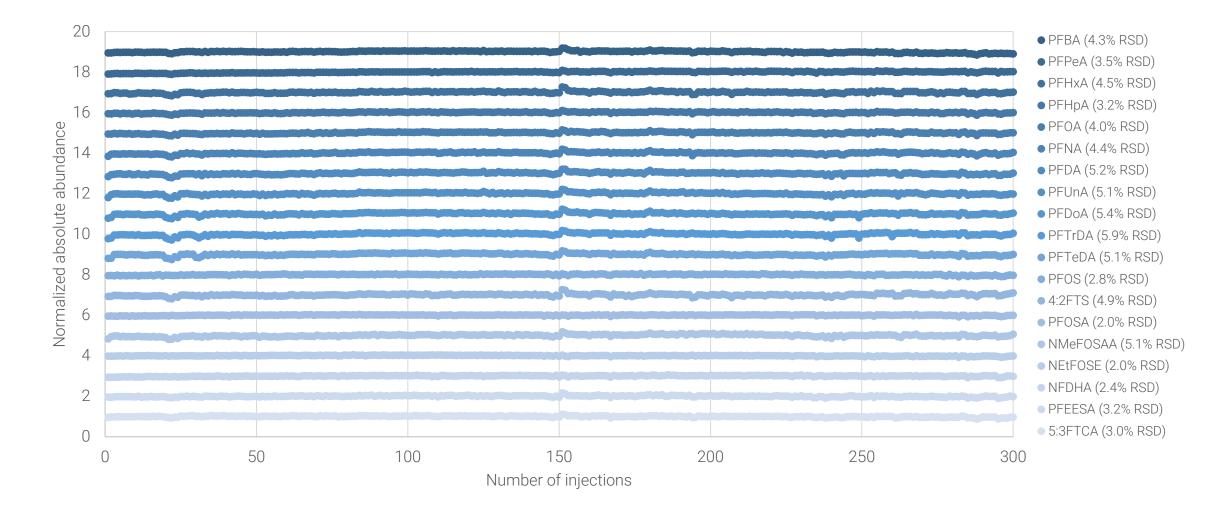
Reliability & Robustness for demanding applications.

Born out of our drive for innovation and improvement, Agilent's 6495 Triple Quadrupole LC/MS is an innovative, powerful, and reliable mass spectrometer for customer applications demanding the lowest limits of detection, sampling speed, and signal reproducibility.

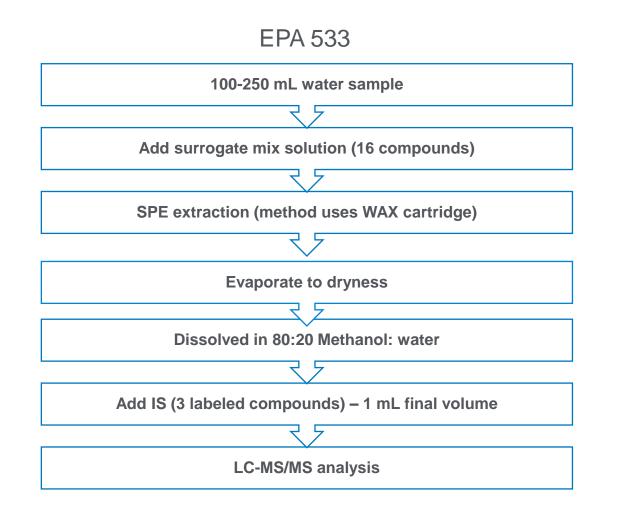
Experience the highest level of confidence with the 6495 Triple Quadrupole LC/MS.


Comprehensive Workflow for PFAS Analysis in Wastewater

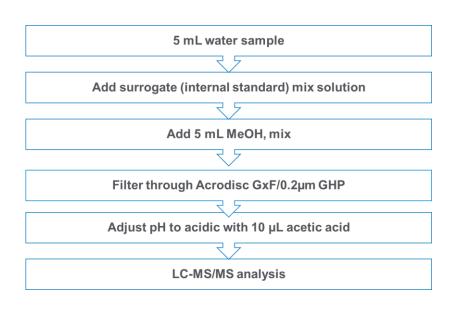
Poster Thursday 075

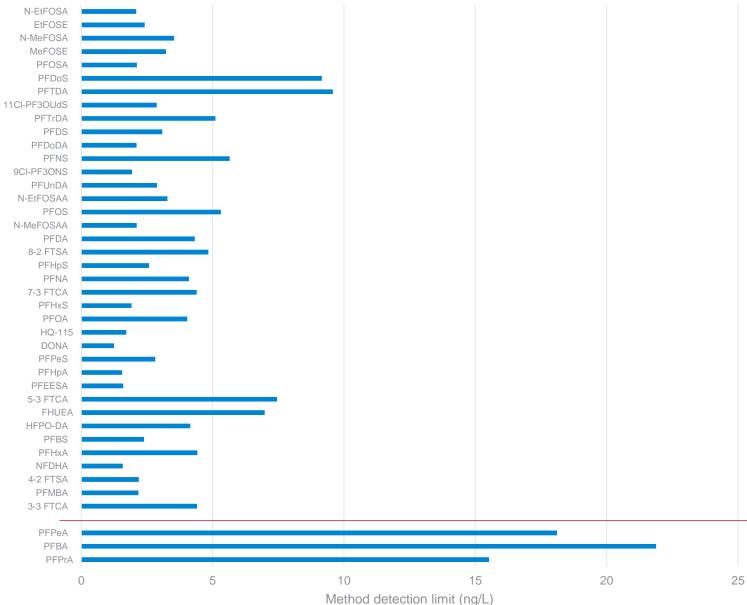


Method Detection Limit and Relative Standard Error



6495 LC/TQ Robustness >300 injections run over 80+ hours; RSD <6% for all 40 PFAS in EPA 1633


EPA 533



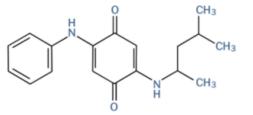
	3 rd Generation iFunnel LOQ (ng/L)	4 th Generation iFunnel LOQ (ng/L)
PFBS	0.01	0.004
HFPO-DA	0.01	0.01
PFOA	0.02	0.01
PFHxS	0.02	0.01
PFNA	0.03	0.03
PFOS	0.2	0.03
	2.5- 7x Imp	rovement

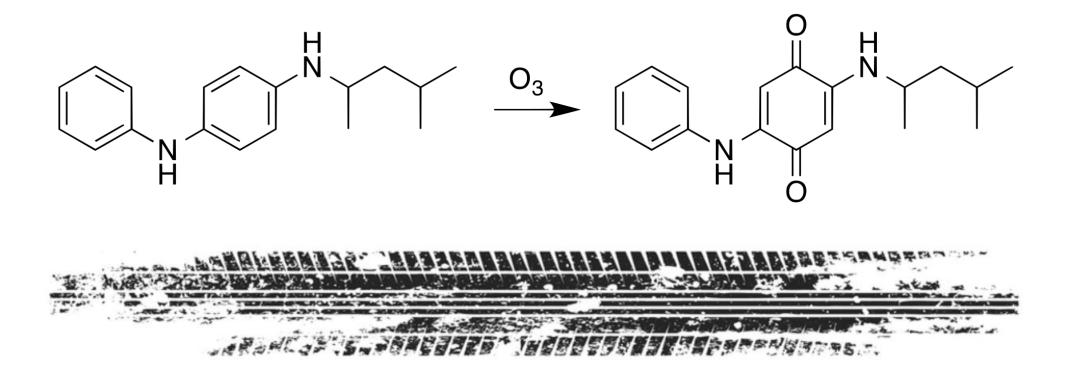
PFAS Analysis (ASTM 8421)

- Dilute and Shoot method
- Reporting range 10 400 ng/L
- Injection volume: 10 uL

Enhanced Sensitivity with 6495!

PFAS Workflows Conclusions

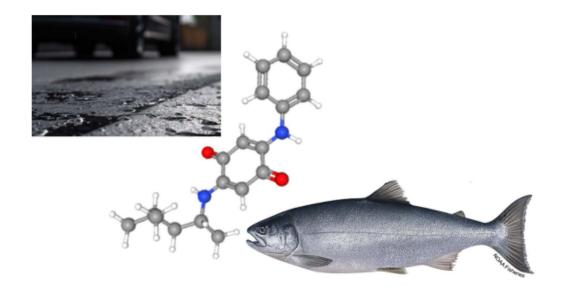

- A comprehensive workflow including sample management, preparation, consumables, data acquisition/analysis, and reporting developed for the PFAS analysis.
- Reliable sample preparation with excellent recovery.
- 6495 LC/ TQ showed excellent reproducibility and robustness for targeted analysis
- Instrument sensitivity allowed the reduced injection volume for dilute and shoot method
- Now a Fully Mature Workflow



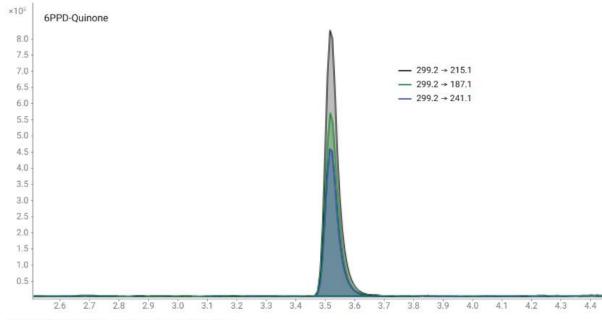
6-PPD Quinone

p-Phenylenediamine Quinone

Oxidative Formation of 6-PPD Quinone from 6-PPD

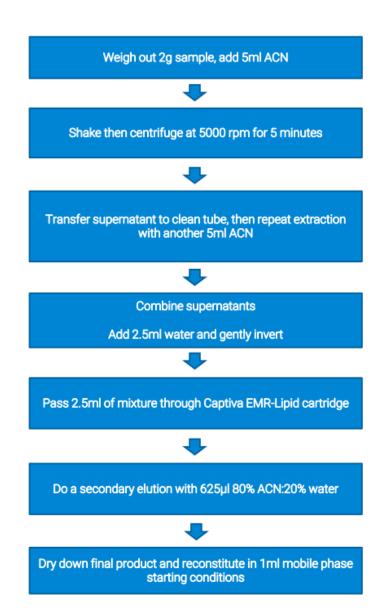

Species	LC ₅₀ (μg/L)	Test duration (h)	Toxicity Key
Coho salmon (Oncorhynchus kisutch)	0.04, ²⁴ 0.08, ²⁵ 0.095 ²	24	Higher
White-spotted char (Salvelinus leucomaenis pluvius)	0.51 ²⁶	24	
Brook trout (Salvelinus fontinalis)	0.59 ³	24	
Rainbow trout/steelhead (Oncorhynchus mykiss)	0.64, ²⁹ 1.0, ³ 2.26 ⁵	96	
Chinook salmon (Oncorhynchus tshawytscha)	67.3 ²⁴ , 82.1 ²⁵	24	
Sockeye salmon (Oncorhynchus nerka)	Not acutely toxic at 50 ²⁵	24	Lower
Atlantic salmon (Salmo salar)	Not acutely toxic at 12.2 ²⁸	48	
Brown trout (Salmo trutta)	Not acutely toxic at 12.2 ²⁸	48	
Arctic char (Salvelinus alpinus)	Not acutely toxic at 12.7 ³	24	
Southern Dolly Varden (Salvelinus curilus)	Not acutely toxic at 3.8 ²⁶	48	
Cherry salmon (Oncorhynchus masou masou)	Not acutely toxic at 3.5 ²⁶	48	

DRAFT Method 1634


Determination of 6PPD-Quinone in Aqueous Matrices Using Liquid Chromatography with Tandem Mass Spectrometry (LC/MS/MS)

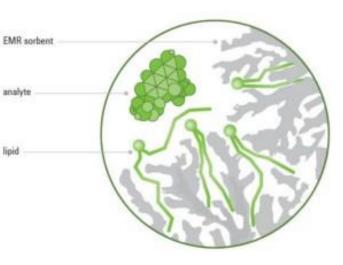
6-PPD Quinone in Stream Water Method via LC-MS/MS

Compound Name	Precursor Ion (m/z)	Product Ion (m/z)	Ret. Time (min)	Fragmentor (V)	Collision Energy (V)	Cell Accelerator Voltage	Polarity
6PPD-Quinone	299.2	241.1	3.52	105	32	4	Positive
6PPD-Quinone	299.2	215.1	3.52	105	16	5	Positive
6PPD-Quinone	299.2	187.1	3.52	105	32	5	Positive
D ₅ -6PPD-Quinone	304.2	246.1	3.49	110	36	4	Positive
D ₅ -6PPD-Quinone	304.2	220.1	3.49	110	20	4	Positive
D ₅ -6PPD-Quinone	304.2	192.1	3.49	110	36	5	Positive


6PPD-quinone was quantitated using a calibration curve from 0.01 to 50 ng/mL using quadratic fit, 1/x weighting, and including the origin. The R2 value was greater than 0.999.

Method recovery (accuracy) in HPLC water was 113.5% and in stream water was 112.6%. Precision, expressed as %RSD, was 3% in HPLC water and 1% in stream water for n = 5replicates at 5 ng/mL. The LCMRL of 6PPD-quinone was 0.023 ng/mL. There was no contribution to the 6PPD-quinone signal from the LC system.

Figure 1. 6PPD-quinone chromatography at 0.2 ng/mL.



6-PPD Quinone In Salmon Tissue

EMR sorbent <u>technology</u> effectively traps lipids through two mechanisms:

- Size exclusion Unbranched hydrocarbon chains (lipids) enter the sorbent; bulky analytes do not
- Sorbent chemistry Lipid chains that enter the sorbent are trapped by hydrophobic interactions

LC-MS/MS New Contaminants, New Tools, New Solutions

